Consumer Confidence Report

Annual Drinking Water Quality Report

GREEN OAKS

IL0970040

Annual Water Quality Report for the period of January 1 to December 31, 2019

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

The source of drinking water used by GREEN OAKS is Purchased Surface Water

For more information regarding this report contact:

Swanson Water Treatment, Inc.

Name __

Phone 847-680-1113

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo o hable con alguien que lo entienda bien.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.
Source Water Information

Source Water Name: DCO1-MTR VAULT NE O'PLAINE AND 3AM FF 160-077000 TE01

Type of Water: SW

Report Status: Location

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator at 847-620-1113. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water: Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/snow-fact-sheets.pl.

Source of Water: WAUKEGAN Susceptibility is defined as the likelihood for the source water(s) of a public water system to be contaminated at concentrations that would pose a concern. The Illinois EPA considers all surface water sources of a community water supply to be susceptible to potential pollution problems. The very nature of surface water allows contaminants to migrate into the intake with no protection only dilution, which is the reason for mandatory treatment for all surface water supplies in Illinois. Waunegon’s 6,200-foot intake has a low sensitivity and therefore has greater protection from contaminant contamination due to mixing and dilution. The 2,960-foot intake is moderately sensitive to potential pollution, and although there are no potential shoreline sources in Waunegon's critical assessment zone, there are several immediately adjacent to the CAZ with a great deal more in Waunegon's local source water area. Shoreline sources in the vicinity of this intake are perceived as a potential threat to Waunegon's water quality. The combination of the land use, zoning, Waunegon Harbor, Waunegon River and NSD treatment plant add to the susceptibility of this intake. However, it should be stressed that treatment employed by Waunegon is protective of their consumers, as noted by the facility's recent finished water history.
2019 Regulated Contaminants Detected

Lead and Copper
Definitions:
Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>09/11/2017</td>
<td>1.3</td>
<td>1.3</td>
<td>0.146</td>
<td>0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>

Water Quality Test Results
Definitions:
Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
nan: not applicable.
mrem: millirems per year (a measure of radiation absorbed by the body)
ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
TT: A required process intended to reduce the level of a contaminant in drinking water.
Green Oaks

Regulated Contaminants

<table>
<thead>
<tr>
<th>Disinfectants and Disinfection By-Products</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>NGL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>2019</td>
<td>0.74</td>
<td>0.7 - 0.74</td>
<td>NRDLG > 4</td>
<td>NRDL > 4</td>
<td>ppm</td>
<td>N</td>
<td>Water additive used to control microbes.</td>
</tr>
<tr>
<td>Haloacetic Acids (HAAS)</td>
<td>2019</td>
<td>20</td>
<td>19.6 - 19.6</td>
<td>No goal for the total</td>
<td></td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes (THM)</td>
<td>2019</td>
<td>45</td>
<td>44.9 - 44.9</td>
<td>No goal for the total</td>
<td></td>
<td>ppb</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>
Waukegan

Regulated Contaminants

<table>
<thead>
<tr>
<th>Disinfectants and Disinfection By-Products</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>2019</td>
<td>1.2</td>
<td>1.1 - 1.2</td>
<td>MCLG = 4</td>
<td>MCL = 4</td>
<td>ppm</td>
<td>N</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inorganic Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2019</td>
<td>0.02</td>
<td>0.02 - 0.02</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>N</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2019</td>
<td>0.7</td>
<td>0.709 - 0.709</td>
<td>4</td>
<td>4.0</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Nitrate (measured as Nitrogen)</td>
<td>2019</td>
<td>0.38</td>
<td>0.38 - 0.38</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>N</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Zinc</td>
<td>2019</td>
<td>0.021</td>
<td>0.021 - 0.021</td>
<td>5</td>
<td>5</td>
<td>ppm</td>
<td>N</td>
<td>This contaminant is not currently regulated by the USEPA. However, the state regulates. Naturally occurring; discharge from metal</td>
</tr>
</tbody>
</table>

Turbidity

<table>
<thead>
<tr>
<th></th>
<th>Limit (Treatment Technique)</th>
<th>Level Detected</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest single measurement</td>
<td>1 NTU</td>
<td>0.1 NTU</td>
<td>N</td>
<td>Soil runoff.</td>
</tr>
<tr>
<td>Lowest monthly % meeting limit</td>
<td>0.3 NTU</td>
<td>100%</td>
<td>N</td>
<td>Soil runoff.</td>
</tr>
</tbody>
</table>

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.